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ONE-DIMENSIONAL TWO-PHASE FLOW IN COMBUSTION CHAMBER ;
]
.

OF SOLID PROPELLANT ROCKET 4A0TORS
CHANG XIANQI

- ABSTRACT ,

n this paper, a numerical solution of basic equation for /23 v
one dimensional two-phase nonequilibrium flow in a combustion

chamber of solid propellant rocket motors is discussed in detail, ;
combustion /
the effect of particle size on flow field inAchamber and pressure-

time curves is analyzed, and some useful conclusions are obtained

in comparison with results of one dimensional two-phase constant ;

combustion y

lag flow inAchamber. It is useful for predicting pressure-time ;

curves accurately and providing accurate boundary conditions -

for the calculation of two-phase flow through the nozzle. ( NI :
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Nomenclature
A - duct cross section area
A - Burning area of charge
Ag - Thermal equivalent of work
A - Area of the nozzle throat
M - Mean molecular weight of gas
n - Pressure expenent
P - Pressure
FPs - Total pressure
b - Burning speed coefficient
C* - Characteristic spced. of propellant
G, - Particulate specific heat
Cog - Specific heat of gaseous phase at constant pressure
g - Gravitational acceleration
h - Enthalpy per unit mass
Hg - Total enthalpy in | kg of two-phase mixture
Hgg - Total enthalpy in 1 kg of gas
Hg, - Total enthalpy in 1 kg of liquid
« - Ratio of specific heat of gas

K - Particle velocity lag coefficient

K, - surface - throat ratio Kl

2

1 - Charge length

.- Particle temperature lag coefficient
m - Mass flow rale of two-phase mixture
m, - Mass flow rale of gas

q - Heat flux of particles per unit mass

r - Burning rate
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- Radius of particles
R, --Gas constant of gaseous phase
S - Duct circumference
t - Time
T - Temperature

T,

o Total temperature of charge head gaseous phace

T - Total temperature of gaseous phase
v - Velocity
X - Axial coordinate
X - Particle resistance per unit mass
Yo - Outer radius of charge
p - Density
¢ - Density of propellant
m,, - Mass flow rate of condensed phase
Mg - Mach number of gaseous phase

Pmp - Density of Al,03 material

¢ - Fraction of particle mass flow rate, ¢ = —2—
m

>y - Coefficient of thermal conductivity of gaseous phase

My - Coefficient of dynamic viscosity of gaseous phase

SUBSCRIPTS

£ - Gas phasc

O- Cross section of charge head

t - Cross seclion of nozzle throat

P - Condensed phase

L - Cross section at the charge tip

i-1initial value
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1. PREFACE

Modern composite solid propellants are mixed with a certain
amount of aluminum powder for increasing energy and decreasing
unsteady burning. Wwhen the aluminum mixed propellant burns,

A1203 particles are {ormed in liquid phase. The weight fraction
can be up to 30-40%. Therefore, in combustion chambers and jet
nozzles, the products of combustion actually are a mixture of
gas and liquid.

There have been a lot of publications regarding two-phase
flow in jet nozzles of a rocket motor. Most of them are devoted
to one dimensional two-phase flow and two dimensional axial sym-
metrical two-phase flow in nozzles. There has been some progress.
Two-phase flow in a combustion chamber is involved with mass,
and has some new characteristics. The author has done research
on one dimensional two-phase constant lag flow in a combustion
chamber [4], analyzing the particle velocity lag effects on the
combustion chamber processes. This article studies the one
dimensional two-phase nonequilibrium flow in a combustion chamber.
Based upon the principle equations of one dimensional mass involving
two-phase flow in a combustion chamber., it discusses the numerical
solutions of the equations in detail, analyzes particle size

effect on the chamber flow field and the pressure-time curve,

and compares the results with that of constant lag flow.

Some practical conclusions are reached. This gives precision

q
[
[
in predicting pressure-time curve, and more accurate boundary !
conditions for calculation of two-phase flow in jet nozzles. \
1
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II. FUNDAMENTAL EQUATIONS
Assume:
1. Flow is one-dimensional and steady-state;
2. The friction and heat loss on the duct wall are negligible;

3. A1203 particles are spherical, uniform, and in the liquid
phase; the particle volume and the Brownian motion effects
on pressure are negligible;

4. The gas phase is an ideal gas at freezing point except in
contact with particles and otherwise is inviscid;

5. No mass exchange between two phases;

6. The specific heat of gas and particles jis constant

Based upon the above assumptiors, the fundamental equations
of two-phase flow in the combustion chamber are obtained
as follows [J] and [3]:
Gas phase -

Mass Equation:

d
Tx(anuA)'_'(l_e)PrrS (1)
Momentum equation:
—(vaaA)=—Ad——Xp,A (2)
Energy equation:
——l PagUnA(hn+AO v;>] (1—e)prrSgHso— Ao X prvpA+qprA (3)
in which r =b6P"
ho=C,yT
Condensed phase- rete
Mass Equation: d
'd?(PrUPA)'=¢prfS (4)

f)..-bl."-l'.-"h)\ - \ l o » .'\J\ .\‘ ..\‘ ‘-. \- \..\
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Momentum equation:

:—x(prvi-A) =Xp,A

Energy equation:

d‘i_x[ppgv’A(hP+A° %)]=epTrSQHsr+Aoprva—qp,A

Two-phase mixture-

Mass egquation:

Momentum equation:

dP
2 (pui A +pprd)=— 440

Energy equation:

d’ U + Ve ]- rSH
dzi™ (h'+A° _Zj) +m'(h’ 4o 29) or ’
in which

My =pyveA
mp =p’UpA
] =m|+mr

III. SOME SUPPLEMENTARY RELATIONSHIPS

Equations (l1)-(6) &re not closed, therefore,

we introduce the following supplementary relationships:

Gas-phase condition equation

for an ideal gas -- P=p,gR,T,
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2. Condensed-phase condition equation. )
When the 11\1203 particle temperature is greater than the melting "
point (7,.=2318°K) assuming its specific heat is constant, ;
then

hr=hrat Ci(To=Th.) (11)
in which )
C, - Specific heat of liquid Al,0, particle, 0.34327 KCal/kg.
degree K; hpm - Enthalpy of liquid 17\1203 at Tpm’ 876.9498
KCal/kg
From (11) we have 4
dhp=C,dT., (12)
3. The particle resistance X[1,2] per unit mass :
X=A,(v,—v,) (13) E
Under the condition of combustion chambers, the particles R
carryout Stokes flow, at this moment E
:
Ar:% r’:;.p
in which u,=1.208x10"T°;“H°-'(kg,sec/m2) '_:
4. The heat flux gq [1,2] of particles per unit mass
9=8,.(T,-T,) (14)
in which Bp=j’i;’_’ ;‘

5. The total enthalpy HS in 1 kg of two-phase mixture HS=(1‘8)H5.+eH“
From the assumption 2, HS is constant along the channel, f

therefore, it is convenient to use the parameters (vp=ve= 0, To=T,=T,) :-

at the charge origin (x=0), to express HS. Therefore \
N
o
Hy=(1=¢)CreTotelhrat Ci(To=Tra)] (15) 3
7
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IV. COMPUTATIONAL EQUATIONS

Let
K=Y (0K <1) (16)
Vg
L=;° Tr  (o<L<1) (17)

Therefore particle velocity lag =9£E£3=1—1(
’

particle temperature-iag-—? ;'=1 -L

L [
Here K,L are defined as particle velocity lag coefficient

and temperature lag coefficient respectively.

Ignoring the effect of burning erosion, assuming the cross
section area A of the charge duct is constant along
the longitudinal axis, after an elaborate manipulation, the
following numerical solution is obtained based upon the

fundamental equations:

dvs =4 v,—v,_eprrS

dx F Up prA 1
dvy _ _ R, hoA Ve

d:: " psviCre—gReT, CH"'AOR'U')‘-gpP o Us

S
+psBp(Tr—Ts)+AaprAr(ve—vs) +(1=€)prr =g

v’ (1—e)prrS _ e Vg—Up
¢ (Hsn+ha+A02—;-> - p,A l—eAF Up

dm _ :
E—x— —prfS (

= em |
pe UpA

=(1—e)m i
Pe e 4 (18)
P=Po"'(ppv1r: +an’r) ;

=_P ;

¢ p,gR. '
To=—tleCTi+(1=)CriTi=(1=e)Cr T, ‘

IS

d

—(1—¢€)Aq —;—er 29]

-_Ye
\/kgRyT‘

Ts =T,(1+k———]M’,)

Ps=P(1+ ‘M*) =

\ St WYy NS & - s J
o { e @@@M‘MMAMJ_J J)A.A;.M.t.;&t.j‘.fu‘.f.i‘xlf;m




Hsa = CnTs

in which

Pes P, Ps, Ts, MyEm,

V.

When t=0, S=Si’ A=Ai0. The

cross section of the duct.

Y; is the duct initial radius.
The boundary conditions

If the charge fills the

Figure 1);

The initial condition of the equation:

value of Ai' S

S;-Z:ry.
A.--:tyf

of equations:

equations and 8 algebraic equations, with the unknowns.

i

The system of equation (18) contains 3 ordinary differential

ve, T"~ Prs Ug,

under the given boundary conditions, which

can be solved by the Runge-Kutta numerical method.

INITIAL CONDITION AND BOUNDARY CONDITIONS

can be obtained by

the actual shape of a charge duct, for a circular

annular space between two closed

m. = 0
Tﬂo = Tro =
P = P.
P,
P 9R,T.
4 vgo &.
p B —_— W
S PP L L K,
9
"""""" S A NN AN A

at the charge head (x=0) cross section

end coaxial cylinders, the boundary conditions are (refer to

(19)

N
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in which, the total temper'ature of the charge head gaseous phase ‘1'0 is equal

to the burning temperaturé of the charge.. Po is the correspond-
ing pressure. Before solving the equation, it is unknown. Therefore,
its value has to be determined by the iteration process in the
numerical solution. The particle density Pre at the charge

head is % an uncertain value. To determine this value, the

value of Ko has to be obtained beforehand.

7777 TN,
o_.a_':..]‘q}r/l i
—— | ———

Figure 1.

At the charge end (x=]) cross section the mass flow rate m of the

two-phase mixture passing through the cross section area at the
charge end (x-1), should be equal to the mass

flow rate ﬁt:of the two-phase mixture passing through the throat
of the jet nozzle, that is

I (20)

hL can be determined by the parameters of

of the x=| cross section, that is

(21)
my=A(perVor+pPriver)

10
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The present article is mainly about two-phase nonequilibrium
flow in a combustion chamber. To avoid the numerical solution
for one dimensional nonequilibrium two-phase flow in the jet
nozzle, in the determination of the boundary condition
of the charge end, it is assumed that the
flow in the jet nozzle is a one dimensional two-phese constant

lag flow, therefore:

1 r 'y ,
m:smmpsy_AcJ—'— (22)

in which
C=1+ﬁ{K[k(1-K)+K]+(k—1)6LD}
4 2
1)==l-+i::;1(
1+-£.5L
1—e

C
0= !
Cr,

F=1+ (k—l)%

f=*/7(r-f-1)“"?"

where the value of K, L should be taken as the corresponding

value at the end of the field length.

VI. THE DETERMINATION OF Ko, Lo
{

For obtaining the distribution of particle speed lag and

temperature lag along the duct, and the numerical solution

for a system of equations (18), the values of K, L at the

OO




charge head (x=0) have to be determined.

However, at x-0, both K and L are indeterminate forms, therefore,

it is necessary to consider that at the charge head

K=Kt
L.ﬂL.oo*
The determinatiom of Ko
from 1 ' Hopital's rule _
=v;‘r0‘ (a)
K. U”r-"'

After transforming the first equation in the system of equations
(18), we find that , at  x—=0* | vjl..o* is also

an indeterminate form of =. So

olo -~

it 7 PO

g Vel =Vl

v’PI.‘. v;'ﬁ..

For convenience, the subscript x—0* has been omitted in
the following expression. After rearrangement it reads

2 (b)

—_—yt?
A’vp+v;—v;=o

With the help of the boundary condition (19), from the second
equation in the system of equations (18) the following is

derived that at x—0*
vy (1= 8)prrsS (c)
PloA

in which r.=bP:

Substitute (c¢) into (b), it is obtained that at x—0*

(d)

_8_ (1"3)21705
—liJl+A, peed

12
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Because in a combustion chamber the flow involves

an additional mass of particles, if the speed of a particle V-
increases, then vi>0 therefore, (d) should be positive

which results in the sign in front of the square root being

"+"

Substitute (d), (c) into (a), and set

a‘_‘__ (1—8)21705 (23)
A» PuA
then obtain

The determination of Lo

Same as above, from 1' Hopital rule

L.-L&JL'L (e)
T o | eee*

It can be derived from the fundamental equations (1)-(6)

ATs e L (1o hosgo o\ Be(To=Ts)
_d;"_=7‘,= xC:(H” hrt A 29) vrgCi

o

herein, 7T.|,..- is also an indeterminate form of 0.

From 1'Hopital rule it is obtained as

. . Br Tileest =T aee*
TPINO‘=—TI'laOO‘—g—C”' L= L et

Vsl pos*
Omitting the subscript x—9* , then
£
o7 o Be Ti=T; (o
' 9Ci vp
let = B, 1
gCi vi

-y ..~

i % % ey

»
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from equation (f) it is obtained

LomcB (25)
2+ 8

With the expressions of equations (d) and (23), the following

is obtained:

« B, 1 |
B=3C, 4, (m1+v/1%2) (26)

VII. NUMERICAL SOLUTION OF THE SYSTEM OF EQUATIONS

Under the boundary conditions (19), (20) and the initial
condition, but use of the fourth order Runge-Kutta method the
solution for the system of equations (18) can be obtained as

follows:

1. At a fixed time t, the gas flow parameters (vs, T4, ps,» P,
Ps, Ts, Ms),. , the particle flow parameters (y,, T, p») and
the particle lag factor K, L distribution along the

duct.

2. The pressure variation with respect to time in the combustion

chamber.

In the boundary condition (19), the head pressure PO 1s unknown apriori,
and has to be determined with the numerical solution process. The

procedure is the following:

14

.....




(1) Form i%”-(c'p,bkyﬁ%? to compute the first approximate value;
(2) With the value of Po(l) solve for the system of equations
(18) , and obtain the variation of parameters of the gas and the
particle along the x-axis, then form equation (21), (22) and
solve for hL and ﬁt;
(3) Let Am=m,—m,; ., and make a judgment on

o)<

(El is a given allowable error, for instance €l=0.01) to see

whether it is satisfied.

(4) If equation (27) is not true, and pm>o0 , take Pim Py —
(AP is the glven increase in pressure, for example

Aﬁp 1 kg/cm ), otherwise take P'=pye AP , repeat the pro-
cedure for solving the system of equations (18), if the mass

flow rate satisfies (27), then Po(z) is the true value of the

pressure at the charge head PO;
(5) 1If the condition (27) still can not be satisfied, the following

interpolation equation can be used for computing Po(n):

- Pg--x )_H--z }

Pirtm Py Am e R D

(R=3,4,5, )

then solve for the system of equations (18), till the mass flow
rate satisfies equation (27). Figure 2 shows the flow chart
of the numerical solution process, in which Tép is the average

burning speed along the length of the duct.
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Key: (1) start; (2) input; (3) compute Po; (4) furnish
boundary conditions; (5) Runge-Kutta method for solving A
the system of equations (18), (6) output, (7) adjust
the head pressure Pé (8) Nu, (9) Yes, :
(10) Yes, (11) No, (12) stop, (13) Flow Chart of

! Computation.
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VIII. THE EFFECT OF THE PARTICLE SIZE ON

INTERNAL BALLISTIC PROPERTIES

As to a certain solid propellant rocket motor ( ¢=0.26),
the pressure-time curve and the flow field in the combustion
chamber have been computed for different sizes of particles.

Figure 3 shows the effect of the particle size on the Pressure-
Time curve. It can be observed in the figure that the pressure
in the combustion chamber decreases as the particle size increases.
At t=0 sec., the variation of the combustion chamber pressure
Po with respect to the particle radius is shown in Figure 4.
The decrease of the combustion chamber pressure will lead to
a slowdown of the burning speed, increase the charge burning
period and decrease the mass flow rate.

At t=0 sec., the variation of the gas parameters along the
x-axis for the different particle sizes is shown in Figure 5.
Mg solely increases with the distance, the rest of the parameters
decrease with the distance. Because P0 decreases when the particle
size increases, therefore P,Ps, pg are affected by the particle
size distinctively. The larger the particle size, the smaller
are the values of them. But the particle size effect on Tg is
negligible,

Figure 6 shows at t=0 sec. the distribution of the gas speed
' g and the particle speed Vp along the duct under
different particle size conditions. Because the flow
in the combustion chamber is involved with an increase in mass,

both vy and 1,15 increase along the length of the duct. But the particle

I AP L PPV R U PP AP AUAE APLRP R B L T P N L I A A LR R el et - -
WU YA S K S A SR S A S AR AL RE S . ., '« CaNC A A LAY (_'.- & et \‘c'-\_‘n
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size effect on V@ and mg is different when particle size increases:

Vg increases, bUt‘Ub decreases. This is because the particle
1

of unit mass has a resistance to the gas of =°2; .  When the
particle size increases, X decreases, so the gas speed increases.
At this moment the torque exerted on the particle by gas decreases.
This results in the particle acceleration decreasing, therefore
'(b becomes small. The density and temperature distribution of
the particle are shown in Figure 7. It can be observed that
fp hardly decreases along the duct and Tp basically stays
constant.

The effect of the particle size on the value of Pp is
significant: when particle size increases, pp increases too.
But the effect on the value of Tp is negligible.

At t=0 sec., the particle speed lag factor K and temperature
lag factor L distributions along the duct are shown
in Figure 8. It can be observed that the value of K slightly
decreases along the distance, but the value of L fundamentally
stays constant. This indicates that in the combustion chamber,
the particle speed lag (1-K) increases slightly along the length of
the duct, but the temperature lag (1-L) basitally stays constant.
The smaller is the particle size, the smaller is the variation

of K value along the distance. (Refer to Table 1.) Therefore

when the particle size is small, the two-phase flow in the

combustion chamber can be treated as the constant lag flow motion.




Table 1.

!
| ! —
‘ BF¥B, @K - K, EEXMKARE (%) Q)

2 0.9958 0.020
l 5 0.9752 0.082

10 0.98123 0.268

20 - 0.7538 0.478

Key: (1) The radius of the particle rp

(micrometer), (3) The decrease of K at the charge end

Table 2 lists, for different particle sizes, the comparison between
the numerical solutions and constant lag flow computations of
some important parameters in two-phase flow in a combustion

|

|

|

|

|

|

| chamber. Compared with the numerical solution, the combustion
( chamber pressure PO and the total pressure at the end

charge end obtained from the constant lag flow
computation are comparatively low, and the rest of the parameters

are comparatively high, but the deviation is less than l%.

Table 2.

@ | arixn @2
(l*)%

TwadZ xa

Ps;
(AFF/EXY)
AR xR

1 4 | 4
<ﬁ%@)! %&Kzﬁb
raRT xat wa 'L

' |
T aees | amst 0 sz | s3s | 1s6e | 20048 | mess
o aeaz | o 18.20 ‘ 1818 | 120.90 | 121.50 | 110.00  110.82
- ‘* ‘ i v ‘
20 17,92 I 17.87 | 17.70 17.68 128.82 i 124,26 82.74 ' 93.82
, 2 2
Key: (2) Micrometer, (3) Kg/cm™, (4) kg/cm”,
(5) m/sec, (6) m/sec, (7%(9L(11L(13) numerical solution,
(85(10“(12»(14) constant lag flow.
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From equation (24),(25) it becomes known the values of Ko' L

o

are functions of the particle radius ry- Their variation with

respect torp is shown in Figure 9. It can be seen in the Figure

K

OI

Lo values decrease when the particle size increases, which

means, the particle speed lag and temperature lag increases as

the particle size increases.

Besides, K, < Ly, in the nonequilibrium flow in the combustion

chamber, the lag of the particle speed is greater than the lag

of the particle temperature.

IX. CONCLUSION

Through the above discussion the following conclusions are

therefore obtained:

1.

Because of the effect of the two-phase flow, the pressure

of the combustion chamber decreases, and the larger the particle
size, the smaller is the combustion chamber pressure.

The two-phase flow affects the flow field in the combustion
chamber greatly. When the particle size increases, the gas
speed increases, the pressure, total pressure and the gas
density all decrease. When the particle speed decreases,

the density increases. The effect of the particle size on

the temperature of both gas and particle is very

small.

In the combustion chamber the lag of the particle speed increases
along the length of the duct, the lag of the temperature basically

keeps constant. Besides, the particle speed lag is greater

TR LN T ot
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than the temperature lag. When the particle size is small,
the two-phase flow in the combustion chamber can be treated

as the constant lag flow.

P kg o
Rl
) %
- — 17
0 10 20 kKt 40 ts) u i 13 M
Ty mm
Figure 3. Pressure-Time Curve Figure 4. Effect of the

particle size on PO
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Figure 5. pistribution of gas Figure 6. Speed distributicn
parameters in the two-phase of the gas and the particle
flow. in two-phase flow.
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PRESSURE COUPLED RESPONSE FUNCTION
OF SOLID PROPELLANTS INCLUDING THOSE WITH
NEGATIVE PRESSURE EXPONENTS

XU Weng-an
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SUMMARY

On the basis of the evidence presented, a steady state coumbdbustion
model (1) of solid state propellents with negative pressure coefficient
burn speed characteristics allows us to derive a new pressure respoase
function formula. This can be used to explain pressure pairing phenomena
for propellents whose combustion speed pressure exponents are zero,
positive, and negative. The burning propellent is divided into two
sactions: the first section is a structure composed of oxidizing agent
20ov2ar2l by nolten binding agent and the corresponding binding agent
st 422, Th2 othsr section is formed by uncovered oxidizer surface and
remaining binding agent surface. This model is different from the
various types of models in the past. In the combustion on the surface of
the first type of section described above, consideration has been given
to the oxidizer, under conditions in which it is covered by molten
binding agent, s5 t1at it is considered to be in a state of opposed
gasification and conge=xled phase reaction. Therefore, the real section
of the pressure response function which is obtained, when the pressure
exponent of the propellent steady state fuel speed is zero or has a
negative value, 1is also capable of being a positive value. When we made
use of the expression obtained for the pressure response function in
experinentation with the propellent(S04-5A)and made qualitative
calculations, the results of these calculations satisfactorily explain
the phenomenon of propelients with negative pressure exponents still being
an3tadle in coabastion whz2n arst of $he2 sarface area of the oxidizer is
cover2d by molten binder agent. This not only overcomes the weaknesses
which all expressions for pressure response functions had in the past
when used with negative pressure exponent propellents, but also, in a
way, reflects the accuracy of the solid fuel propellent steady state
combustion 12121 (1) in its combustion speed characteristics for

o0osisive and negxtive prassure 2xpoanznts.

Bxplanation of Syuabols
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A,. oOxidizer Gasification Rate Indicator Prefactor

__ 2R
B T.—TE,

B, 1Indicator Prefactor in oxidation Agent Equilibrium Evaporation

Pre. re Formula

G Waine
P ()
c Specific Heat
D =A+4(4B—-4)
(48
r = O Q+a(4B-2)
: C+gq/E,. ‘

E,. “nargy of Activation for oxidizer Agent Gasification Reaction

E; ®nergy of Activation for the Propellent Gas Phase Combustion

Pryzass

G 133 Traction of Oxidizer AZent for Completion of Condensation

L~ fesetion

K Spzz21 Coastant for a3 Phase Reaction

o .
........
R *




m Mass PFlow Rate

n Combustion Speed Pressure Exponent
p Pressure
Qr Unit Mass Binder Decoaposition Reaction Heat

Q. Boundary Layer Reaction Heat of Unit Mass oOxidizer

q Jeat of Evaporation for Unit Mass Oxidizer

g, Jeat Flow for Gas Phase Boundary Surface Flow

Q. iaouat of deat Released by Unit Mass Gas Phase Reaction

9. Rate of Release for the Heat of Purification from Boundary Surface
Reaction

Q. eal Section

R* Tniversal Gas Constant

R, P 33 3¢ T i a® P
+ Pressure Response Function m/?
S Eim%sig { {1 i3 the imaginary number unit J-1 )

7 Temperature

T, Absolute Temperature of the Propellent Flanme
T, Iaitial Propellent Teaperature

T, ©»rop2llent 3urface Temperature

t Tlme

26
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Ware Fram nnolecular weight of oxidizer evaporation gas

We Gram Molecular Weight of Gaseous Products from Congealed Phase

Oxidizer Reaction

x Distance

a 1ass Praction of Oxidizer in the Propellent

y 3Surface Area Praction Composed of Oxidizer Agent Surface Covered by
olten Binder Agent

A Zongealed and Solid Phase Td=2at Conduction Coefficient

¢ Jondiwensional Distance =M

A

p Congealed and Solid Density
Q “Tondimensional Frequency =7$%m

@ Angular Frequency

(9
SUPERSCRIPTS .
— sSteady State Value or Average Value
y  Pertardatioa Vala= |
1
. ~ - . {
~ Thapt-e< Sapiitadle oF Perturbation |
{
{
1
|
i
|
|
{
|
i
[
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1 Parameters Corresponding to Area 1

1 Parameters Corresponding to Area II

SUB3CRIPTS

Q

i  imaginary Section
r Real Section

I  Parameters Corresponding to Area I

1 vDarameters Corresponding to Area II

s 3ounlary Sarfac2, Value (Congealed Phase Side) for the Place Where

x=0
1. Introduction

Sonic instability is the priuary form of combustion instability of
1 prop21lient rocket notors. Moreover, this type of sonic instability
143 a3 1its primary source the combustion response of solid fuel
143, 3202132 of this, in the test construction of solid rocket
iotors, the sonic instability which they show is extremely important, and
tn-» theory and measurements associated with combustion response are
indisp2ansable. 1In linear sonic #analysis, on 3223 shoan wnether or ant a
39001 rosket aotor will give a timely, ~consistent pressure perturbation
31l erzsa2nt, Toraing a4 sonically unstable fuel. In this type of

1, B prassuare c2sponse function mast already be Xnown.

i

Mear Tt 3 sy )f 39171 nrapellent pressure response has received

. - 4 o
L1t 22 1 nDAnT 3 ol

re3earsn worx in both the U.3. und ths 3Soviet Union.
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F.E.C. Culick (2) and N.S. Cohen (3) have already doane excellent
critiques of this problem. Concerniag "flatbed" propellent pressure
response functions, P.E.C. Culick and others (2) (4) have also done large
amounts of research. However, the author recognizes that the steady
state combustion model and several assumpitions which fora the basis of
the research are still short on experimental data to support then.
Moreover, sevaral points of theory are still douabtful. For =xaaple, in
ordzar to explain the phenomenon of sonic vibrations in the combustion of
tlatbed propellents, we take the mass gasification rate for solid phase
reactbion areas .nd change 1t for use in the expression below:

E
[)

s
T,

m=A.P.le R

Proa this, we can derive the pressure response function formula:

nAB+n,(A—-1)

‘%—(1+A)+AB

Rp-

A+

Moreover, when e us> this relationship to compare with the results of
s¢pariazabs, we select n,=1.0 . ‘owever, we ¥know that, when the

P ssare 2xXpoaalt of th2 1ass gasification rate for solid phase reaction
areas 1s a positive value, the pressure exponeant for its steady state
combustion speesd can hardly be z2ro. This acticle does not intend to
make more criticism of these publications. We will presant o1 thae basis
of a steady state model (1) of solid fuel propellents in teras of

L
o

r23i5ive anl n2zative pressure exponents for coadbustion speed
characteristics, and derive a new pressure respoase function formula and
fo~2e Jisgran. W2 will uase th21 %o mak=2 = complete explanation of the

J.’)r‘

N
7]

(=]
33ur2 palriig pn2aonenon w1’ cn 2£ists in various typss of solid

o

3
co IS
W .
W

[V

2 pressure exponents are zero,

Y

. "O
N

1l2nts w#h=2n their combustion s

"
, anl negat
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2, Physicnl-Chemical lodel

"n the same way as was the case with the corresponding steady state
moiel (1), we select for use 4 one dimensional aodel and divide the
combustion surface of the propellent into two sections. One section is
231p0321 of oxidizer agent surface covered by molten binder agent and the
arresod1iiag Hialze ag2nt surface. Tet us also stipulate that the

t fraction of surfaze area wnich 1t occupies out of the whole combustion (50

p

J surfuce is 14 . The other section is then composed of oxidizer surface
w1icn 1s not :overed and the remaining binder agent sarfac=2, Theses two

sections are respectively called, for short, Area I and Area II, as shown
in ®ig. 1. At the same time, we take the combustion process for each
5o11id prop=2llent area and siwmplify it into three stages, which
r23p=chively occur in three different phases (Fig. 2).

1) The s0lid phase area on the inside of the solid propellent, to
wnich heat is applied, is gasified by the gas phase flame area with the h
congealed phase reaction area supplying the heat.

2) Wisthin bth2 2ongealed phas2 layer between the solid phase and the

3n3 pnase one sees the development of an oxidizer boundary layer reaction
ind binder agent heat of decomposition which are contained in the
congealed phase reaction and the gasification reaction. 1In Area I,
unlike Arsa IT, one must consider the molten binder agent liquid layer
Taien sovers the surface of the oxidizer as well as the oxidizer
1112, 1Y a3 they exist in the congealed phase reaction related to
gasification and its opposite process--opposed gasification.

3) In the gas phase one sees the occurrence of combustion procs=sses

which include dispersion, mixing, =and cheaical reaction.

-—eee ¥V VvV W
Bl ol il S
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Fig. 1 One Dimensional Steady State Model
1. Dispars2] Flame 2. Perturbed Flame 3. Oxydizer Agent 4. Liquid
Phase 5. Solid Phase 6. Paired Agent Mixed Layer 7. End Flame 8.
AP Flame 9. Initial Flame 10. Combustion Surface 11. Propellant 12.
Liquid Phase 13. Solid Phase

Tig. 2 A& Simplified Two Dimensional Model 1. Congealed Paase Layer 2.
3n01.id Phase Area of Increased Heat 3. 3as Phase Reaction Area
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3, Mathematical Treatuent

For the sake of convenience in the mathematical treatment, we first
1ak2 the following assumptions:

1) The influence of heat damage is negligible.

2) The solid propellent is noncoanpressible, of a uniform qualtiy,
and of the same nature in all directions.

3) The congealed phase layer between the solid phase and the gas
phase is an infinitely thin plaa=. In this plane one sees occuring the
oxidizer congealed phase reaction and the gasification reaction {Area I
and Area II are different and each has its own rules of reaction). At
the same timz2, one sees occuring the high temperature decounposition of
binder agent. This plane is called the boundary surface.

{4) In the three solid, liquid, and gas phases discussed above, the
specific neat is always a constant.

5) 3as phase reactions can be seen to be steady state processes.

6) The influence of congealed phase reactions on pressure
disturbances is negligible. (51

7) When the amount of perturbation is sufficiently small, its second
and haigh2r order snall amounts can all be neglected.

At the s314e time, in the same fashion as normal models, we choose
for us2 a wmoving coordinate systenm. These coordinates take the
instantanzouns burn speeds of the propellents and move them into the solid
nase area. In this way, the origin of the coordinate system can fall
entiraly o th2 so0lid-gas phase boundary sacfacz.

Below we prz32at the respective treatwments for Area I and Area II.

Area T:

{1) Basic Equations

1) The unstable thermal conductivity equation in the solid phase

Meat addition irea is:

e ox P
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2) When we considec the existencs of wolten boundary agent on the
covering of oxidizer surface and the oxidizer under the covering as they
affect congealed phase reactions and gasification reactions, fron
rafer2naz2 artizle (1), the mass gasification rate of propellent is:

1, (— Eu\ |, PeXP(Tg‘gT'.) ,
m=3 1-G wSP\TRT,, . B.(‘H;_G(; "i‘,;f/’;“) 2

3) If ye assume a steady state, the mass combustion rate for the gas

-

phase reaction area can be expressed as (5):

! 4) Energy equilibrium equation for the inside of the infinitely thin
congealed phase layer:

The differsnce between the heat flow ¢, from the gas phase
combastinag sirea andl the neat flow 1%2 =0 transfer=sd into the
solid phase should equal the rate of neat release g¢., which is produced
by the reachion in th: congealed phase layer of the congealed phase and

th2 gasification reaction, that is,

Noreovar, 13112 adhion 2oordinates for explanation, 9e=m[Qy—c(T/—=T.)],

,also, ge=mlaQ,—(1—a)Qsl. . In these equations, Q; is the

amount of n=2at relz=se1 by th2 aais 1335 2as phase reaction. Q. is ?
the algebraic sun of the effective heats of the oxidizer agent congealed .
phase reaction and the gasification reaction. Qf 13 the effrsiive 12at :

L

Prom the high tsaperature thernal de=composition HIL bind=r 12215,

1. T Lo
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substitute the equations above, we get
J
g
>
d aT ( 4—)
: ig .+m[aO.—(1—a)QF—Q,+c(T/—T,)]=0 \
h =
b
4
(2) Linearization Treatuent:
d 1) T®irst, we carry out a linearization treatment of equation (1).
We postulate:
m(t)=m+ R,{me®"'} ;
e 3 3
T(x, )=T(x)+RAT(x)e™'} * )
If we substitute in equation (1), and eliminats the high order sunall
quantities, 2as well as mnaking use of the steady state condition
AZ‘T— 0%7—; =0 L,
x \0)
e, 21145791 C1) 2hanges to bacoue:
(L d'T er| . ; e ®
R.’,i—q{—; e’ } — R, fmer*! d—z} - R, jme"‘c%§§=l\’,{pc7’xa)e' v,
[ B23ca 1 thiese formus oarz2 32t ap foroall Tiues f , tasrzfore, 0one =S
[ -”]1 r
)
4
34
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d? T o dT __mCd_f_'_-{mch
dx

Set

Then equations (5) and (7) can respectively be written

dg*  d¢

a7T d7r m dT
aF a T A

(7)

(19)

2) In the same way, in the case of equation (2), one can set

m=m+m’=m+R,{Mme""} ]
T.=T,+T.=T,+R{T.e'""} f
P=P+P'=P+R,{Pe*'}

Moreovar, one can use the steady state condition

9 N\
. Pexp(RT,)

m=t g duen () 1- B.(1+ 7% Gc. i)
- ¢

Division with equation (2) gives one

(11)

L L I N R B
LA SRR

(52
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P =9 T,
m’ E,, L) C+1-(1+F)W[R'T,; 7] (12)
1+°m =SXP\R'T, ' T, C
In the equation .
G ’Vum)
(,=B'(l+1"G We /_,
- q
Peo( ;)
E,. T. ‘
Also, h22:1132 of the fact that }r}"jf' and 7§%r--;l are both
vary small (ﬁ%ﬁ and 7%%— are both of the order of magnitude
of 10). Woreover, %l is then 1n the range 10='~10"" . Therefore,
one nas '
EQ!_..T_" ~ E“ .T"
b 5 )T R T
¢ T'\oy__9_.T.
exo(f, 7)1 BT

Substitutiag i1 2112tion {12) and eliminating thne saaller guantities of

hignher order, one, then, obtains

, , P__e¢ T
m_E, T. P™RT, T,
m RT, T, C

As above, becaas2 of the fact that all of the equivalent forms for tiues

- - - .

L h D 2t 1, 02 ose ety s
n_E. [C+7§: 7. _RT. P
mTRL LT RCE TS (13)
36
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3) After one curries out the same type of linearigation treatment

on equation (3), one obtains:

™ n;,

7 m-

=5 (14)
2R'T,

4) In the same way, equation (4) can be changed to becoae:
ar _m (dT
(%), +2r=10=1 (%), (15)

(3) 3olution of ®jynations
323ause equation (9) and its boundary condition are:

&7 _ar
dé* d¢
t=—occtime =T,
{s___o time p="T,

=0

it follows that its solution is obviously P=T,+(P.—-T)et .
Moreovear, dT =(P,—T et . If we take this expression and

substitutz it 1nto equation {15), we then get
Ty _ _(p,— T\ m
(4;). (P=10+7.(1-7) & (16)

Marsiar, 07 y2 sabstitute equation (13) and equation (10), equation (10)

»

“changes into

.,-{'_'_. AP et e TP TSR R AT R FR A
\“\ WH‘;}A&A.L“‘M ‘LAEL: L\!.}LA)\ .dhrl'.a. -:k_\i:.\



Its boundary conditions are:

{£=-—ootime T=0
£=0 time =T,

Therefore a general solution for the equation is:

= Eeu T
In the equations A"‘Roq',(l_?:‘) Moreover, A is then
determined from the characteristic equation A—-A—S=0 . Because,
when g=— r=o0 ; therefore, one only has ‘A=(1+~/L+ES)/2

as a characteristic limit. Again, from the boundary condition ¢=o0
, wnen T=7,, , it is possible to obtain a solution to the equation as
follows:

C+7- v, P
A“YE,_ T, RT, -
l'sa'.[e"+ 5(— 7%, CE,. F) (e e‘)}

Substituting in equation (16), one then obtains:

(54
C+ - '
d(—E- 0 & ) 6o
-2 ()R- ()] "
38
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From equation (13), one has

(B -fk s
. R'T, m_ P
‘atr (18)

TIf one takes equations (14) and (18) and substitutes them with equation
(17), one then obtains: -

C+# ¥ C+
4 Ew_ P "TE.
N m, P ) 3=1)
m P
9
C+
P mEP
q. m m -
_ o CtEL I p, Satp
T m T am P i E; . R'T, — ,
C§+P : 2R*'T, E,. -
B = 2R°TY ‘ .
If we make T {T.=T)DE, . and we make use of the pressure response
function definition R,E%/_; , then, ths above equation can be
arranged so that:
A=1
A o 7 o
R,.—A ol N

Area II:
Based on a method similar to the one above, we only take basic

spiation (2) and change it to ba m=A.,exp(—,—§,—‘7:—\ - It Is then

0033 hNe By Hbbaia an expression for the oressare respoa:e function for

Area II(5):
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. nAB

g -:Ii’—A+AB+ (A-1)

Again, on the basis-of the norwal assuaption that there is a direct
proportion between combustion surface gain and combustion surface area,
the pressure response function for the entire combustion surface foraed
by Area T 2ad Area II should be:

A—1
n,A:B:—'C“_W/—F_; +(]—Y) "HAIIBH
.i;l' —A“+A||Bn+(l—])

R:

=y
A' C A 1
-I-_AJ+AIBI | C|q/E..( )

fctually, the imaginary section is:

(55

Q .
;nnlAlBID-'-(A‘"'A'BI— m)E

(Rp)e=vy D'+ E?

nyAnBu(A.D+AF)
+(]—Y) = D+ F?

Q
—A,n,A,B,E+(/1.n,A.B,— m.—)l)
(Rp)i=vy D'+ E° -

- "nAuBn(AlD"ArF)
+-v) D'+ F?

In theae 2quations,
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D=A+1(AB—-A), Eaﬁﬁnu‘ua—m.

F =Q+2(AB—A)

1+\/ 1+(1+16.Q’ ﬂ %

_1J1r ot
A= 2‘/7\_—1+(1+169) !

4 Results of Calculations and Discussion

Making use of the steady state model(1), the various results of
intitial calculations on S04-5A experiments (Table 1) fora the initial
data to substitute into the formula for the real section of the pressure
response function, yielding results such as those shown in Fig. 3.

)

The foraul4s obtain2dl 4nd the results of calculations all clearly
show that the real sections of pr2ssace response functions for "plateau"
and "wesa" propellants whose pressure exponznts are zero or nsgative are
all capable of being positive values larger than zero within quite a
large range of frejuencies. From the standpoint of theory, this explains
vary 4211 facts assoziatal sith s32w3re phenoteana of unstable combustion
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and the existence of these two types of propellents(4l(6}(8). Moreover,
Jast as this author calculated in reference (1), due to the fact that the
4bnor14l ceonhastion of oxidizer covered with molten binder agent takes
the place of partial shut down, in this way, under the pressure
associated with the existence of widespread covering, it is, on the

contrary, easy to see the appearance of the results of self-e xcit=4d

oscillation . It is then possible to givs a reasonable explanation. (56
by nCa - ow3a | oslu 22y | et ol
\ i .
:}ﬁ;::;ﬁi kg;:Ei:V"— ] ——;T:sxxo’-'f P ’ kg/cm? i 23 'oss
C ¢ CalgcK 0.3 e | 03 0.2
Eo Cll"mnl; O 2w 5 y !_4_0 6 B 0.8
—E/—H - Cal‘vmoAl:r A _;— .é;o :‘°T—l; n I— o;; —‘ —~0 693
¢ Calmele - zosxit | P K Y B
v Tk T e h " o —; 0.75 | —0.783
T, C K 203 | Psii °K » Z 8.5 im0
Wone gmde s ey L T | e
Wo o gimole Coa | R B .
;”T-wA‘”C.ch uc'KlA 0.3x107? ﬁ K -
g 7 -; ;;:—‘_ ‘ 1.6865 ;! o S -i ————— o
Table 1 1. Parageter 2. Unit 3. ¥unerical Value 4. Sample

Tilzatasion

gynat the dotted line in Fig. 3 shows is that, in reference (1), S04-5A

2

propellant, with a large surface area covered and a pressure of P=23kg/ cm

in experiaents with the "T" type engine, shows the appearance of

’

321f-2xcited oscillation. The frequencies involved correspond to the

M3 fanctions for jaite high pressures.

1y’
&

ra4l soechion valazs of 52 r23

Ry~ o7 Snis, the anpearanc2 of ss2lf-excited oszillation in these

s¢parimants 2anndt be considered surprising.
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Most of the results discussed above were obtainzl throagh analysis
in Area I. Thnis was done througn the use of our steady state model and
with consideration given to the covering of the oxidizer surface with
molt21 Hinlzr az2ab 2aad 5o Hh2 2xzistoence of a4 congealed phase reaction as
well as opposed gasification. Because of this, the theoretical formula
derival Tor the pressure response function can not only overcome the
deficlency 4330ciated with the fact that the pressure respoase function
formulas we already have eaannot be used with negative propellent pressure
exponants, but also, in one respect, it reflects the vitality of the
stable state combustion model(1) for solid state propellents, which
presents the combustion speed characteristics for positive and negative
pra2ssara 2xpon2ants.

The formula which is derived when the covered surface area fraction v
is zero, then becomes the "two parameter formula" for
propellents with binder agents which are difficult to melt:

nAB
}t+i§:—(l+A)+AB

Rp=

132 of e uanified expression we already have for the "gas phase
quasi-steady state, uniform propellent unidimensional model"(2), this
article consegquently derives » foraula which is capable of having even

broader applicability.

This articls, before deriving this formula, made no siaall number of
eupirically quite significaat assaaptions. For example, the assumption
that the congealed phase layer which gives rise to the congealed pnase
ragetion 2and the gasificatina r2action s an infinitely thin plane i3
zerbaialy aot a2 goond upproxiaation{2). The assumption that the gas phase

1433 ¢ 352ady 3tate nas an error leas than 10% only when the

wd

a
2

o
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fraguencies are smaller taan 10,000 Hertz(2)(5). The compressiblity of
propellents also has an influence on response functions which is within

10%(9). Heat radiation losses, ander cartain conditions, 2lso have an
obvious influence on response functions(10)(11). As far as congealed
phase reactions are concerned, in our stable state model, they are
basically pressure functions(1). Howzver, we also coaveniently saw from
our mathematical treatment, that, when their influence on pressure
diminishes , error is, naturally, even more unavoidable. Although,
2xcept for congealed phass reactioa problems, the majority of assumptions
ar2 obvious, they are also universal in their application. However, this

2xplains the fact that the foruulas derived above are still awaiting
refinement. w
At the same time, formulas derived on the assumption of homogeneity
can, of courss2, oanly b2 used in situations where one has homogeneity.
dowever, duz to the fact that propellant impurities have already been (57 H

used by several scholars (12) in methods such as the one that follows,

that is, taking a maulti-mode conposite prop2llant and viewing it as a
finely dispsrsed oxydizer granule/fuel "surface match up" of random
arrangement. When one assumes that each "pairing" is mutually

i

“
R

indpendent, then it also b:2conazs possible Lo take the propellant surface
and rearrange it into a family of hypothetically dispersed units of
propsllant. This is what is called a hypothetical propellant. And, the
pressure responses of these nypothetical fuels are calculated using
formulas d=2duced from homogeneous theory. Moreover, froam this one
obt=2ins th2 prassure response for the whole conposite propellant. Just
as is pointed out in reference (3), although this method has the
drawbacks of two different models in its application, it is still
currently being followed. Because of this, this wod21l certainiy does not 7
Tail to explain pressure pairing problem values for composite solid

propellents b2c4us2 of its adoption of a honogeneity hypothesis.

w

, Conclusions

PR - . ~

criias e 0" 0 s dly s3babe coabustion nodel for positive and
gative pressur2 exponent combustion speed characteristics for solid

i

propallants, we deduced a new preassare respoasa Taachion formala. Tais !
L

[

Zoranla 2<plains, in a reasonable way, phenomena associated with unstzble

combascion wnizh 2xists in all solid propellants with positive, n=zgative

11 z2r0 pressure exponents.
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2) In the sans w¥ay which was the case with the forming of a model

for steady state combustion, in the combustion of propellants, the
ph2nonenon of molten binder agent covering OXldizer surface area should
also be considered in the forming of a model for unstable combustion of

solid propellants.

o

3) Using the unusually regular counbustion of the coagesalad phassa

rz2action and opposed gasification covered by molten binder agesnt to
~2place localized shut down is a precise and necessary method. This is
true not only for steady étates, but for non-steady states as well.

4)  The aodel presinted ia this article is still awaiting further

experimental testing and perfecting.
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THE ANALYSIS AND CALCULATLON FOR THE
DYNAMIC CHARACTERISTICS Of THE OMNI-
AXTAL MOVABLE FLEXIBLE JOINT NOZZLE
v+ J
B
YANG Shi-xue
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SUMMARY

In this article, under simulated engine conbustion chander pressarc
conditions, we carry out an analysis of and calculatioas for ths dyaaiic
of the omni-axial rotation of flexible jet nozzles. The important
2ontents iaclule:  analytical calculations of measured data; analytical
r4lzalations for the center of instantaneous oscillation of jet nozzles;
211, calculations of the moments of force of oscillation. Besides this,
v2 2130 calenlatad the paraaneters that follow: the aangle of oscillation
a1d angular velocity of jet nozzles; azimuth angles of oscillatioa; a2
lenzth of operating tubes; eccantelcecity of thrust; and, axial and radial
lisplacea=znt of jet nozzles under differing pressures of contents, etc,

This nethod »f calculation, after having appropriately resolved the
ool 5T insfailing telenetry pickups, is still suitable for use with
17% test bels and is also suitable for calculations and measurements

uni=sr conditicns of static oscillation of flexible jet nozzles.

—

1, Calculations of Adjustments in thzs Amnounts of Diasplacsazat anl Angles

of Oscillationn

election of Measuring Equipment and Coordinate System
P

apparatus for measuring simulated axial oscillation of flexible

i3 23 snowa (Rig. 1). The flexible :oan=ctor neadl connects
with the end ring and the lower flat plate. They and the
snell body together fora a s2al2d high pressure vassel. To tha

vonton Tlan 452 13 firmly attachned 4 rod (simulasing th= j=t nozul:).
() (%

oint of contact on the Z olate

Its axis line and the axis line of the f1-xible connz2ctor n2ai1 =ar:2
b

congruent. Tts
2y0~ 112 st O T4y this Slae B rontent

Pl N

™2 axis 02 i3 thz2n congruent with the axis 1lin:

Th= top end of the rod and the axis line ar=

e Thab olata, wni:a T3 ecalledl the 2 »plate. The axial
1i3olaic2nent 32nsor Z .3 congruent witn th=s axis 1lla=s >f
£ 3 ()

1ir2ct'0oa 2nd amount of thrust =re 201t-n11l=41 by aztuator

whicn =r=2 roe3p2ctivetrs nositiioned 11 ploa2s oYz

v Fh

in “his way a2 fixed coocdinas: 373521 ON vz

= o
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is then established. Two flat plates are installed on the rod.
They are respectively perpendicular to the X axis (called the X plate
and the ¥ axis {callad the Y plate). Displacsasat sensors A XX,
and YoV, 4re respectively perpendicular to the X

plats and the ¥ plate. Moreover, lines extending from X

and Y: | and X, and Y, connect respectively with two poiats on
the 7 axis.,  Their poiats of intersection, with coordinates in %1232
dimensions, are (0,0.—Z,L(0,0;—ZJ . An extension of ta2 X,
axis line of the displacement sensor intersects with the ozy

coordinate plane at point (0,-Yer—2Z:) . Th2 distance Tron the X
olate and th: Y  »nlate to the coordinate point is R in both

cases. Thes other two displacement sensors H, and /.. r23peotively
measure the two actuator tubes fixed to rod points Q, and Qs in

:rns of the annant of axial displacement caused by elastic d=formations

323ides this, the radius of wme=2sureaent cont-ct heads for
displacemznt sensors XX X0WYeGY, is ®  in all cases. Thue
radius of the measursment contact head for sensor 7, way be s2loected at
will. ILet this value be &, . The rest of ths ins aliabion coastanss
and strastural constants are a3 shown in the Figure.

F {50 p, ', and F. ‘or P: ) are activating forces {or
oressure differential) sensors.
{2) Analysis of Displacaaent Sensor Yeasurement Data

fnon< the eight displacement sensors, except for the measuremsnt
Jet e M 1" H, rii2n there is no need to correct, the aeasured
Jasy Hh5-ia21 fron the other six sensors certainly does not perfectly
raflect tne aaount of displacement in the oscillation of the rod. This
i3 due to the reasons set out below. (60

1)  Th2 me2asuring contact head of the sensors is 4 hemisphere.

orling o 2hinges in the angls of osciilation, contact points
2xup=sriz1: lisplacement along the hemisphere, introducing an additional

zmount of displacement,
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Fig. 1 Schematic Diagran of Test Bquipuent 1. Plate 2. Rod 3. Lower
Flat Plate 4. Upper Compression Ring 5. Flexible Contact Head 6. High
Pressure Container Shell 7. Actuator Tube 2 for Controlling the
Direction and Amount of Thrust 8. Plate 9. Diagram 10. Plate 11,
Actuator Tube 1t for Controlling +the Direction and Amount of Thrust

(2) The measurement contact heads for the various displacement
sensors X X XYL,
experimental me=:ac-.240 plates are at a distance from contact poiats on

and the contact points of the

the rod axis line X, =ad fron the symmetrical surface of the rod so that
tne distance varies with changes in the angle of oscillation.

{(3) Be2aise of the fact that the axis lines of X, Y, and Z rotate
at the same time, their matual influences cause plates X and Y to
correspond to the slant which occurs in the sensors. This introduaz2s an

anount of non-displac=2p21% i1 Hth: 3213003,
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(3) Adjustment Calculations for Angle of Oscillation and Amount of
' Displacement

' Let the angles of rotation for the axis lines X, Y, and Z be B.a.0

. In order to simplify analysis and calcalations, we aake use of

1 the geometrical principle of superposition to make a two step
calculation. After that, we superimpose. That is, first we uaake

2aleulations for the situation in whicn a@*0 4nd B=0 |, with §=0 .
; Then, we make the calculations for the situation in which
b

a*0,8%0 and 6%0 .

(1) Adjustment Calculations for the 3ituation in Which e*0,8%0
and we assume =0 .

There arz four types of factors in omni-axial oscillation which
cause adjustuents to the displacements measured by the displacement
sensors:  (2)e>0,8<04(b)a<0, £<0;(c)a<0,8>0,(d)a>0,8>0,

Toraula 12civation Bfiags up one type of situation.

Becentric rotation of the axis line within the first apparent limit
a>0,<0., -

If we assume that the cross section of a rod is a square 23 on a

LR S BE ¥ 38 &

side, then, Fig. 2 i3 41 cubic diagran of angla @ Al angle B of the
deflection. Fig. 3 is a horizontal projection diagram corresponding to
it.

Definition: The plane which holds the displaceunznt sensors X,

[24

and Y, (or X, and VY, ) is the horizontal plaas of test

measuraments. The same rod cross section used in it is reprsented by OEFGH

T8 o2 assun2 thab axis line Y rotates through angle @ and

1213 line X then rotates through angle B, the shangs ia the horizontal (61
plane of t=2:f na2asurements is: square O EF.GH,> elongated square
:E'F’G’H’ﬁ quadrilateral JEFGH . This corresponds to a

change ia the contact poiat of the experimental measurement head of the X
displacement sensor:  A—Ai—~4. .

At point A, : a=0,8=0 . X sensor measurements
zive a3 a displaz-ement amnount Xe=0,4,0=p

At poing A a>0,8=0 . Ta2 me<ared voant of

displacement is X', Th2 actual Aawoaat o displac:a2at s X=0,0

Inz of the adlisioaal amounts of displac2n2nt is:

AIOI—A.O=R/(XE“—R

e Ty CTm T TS A WS TR W s WA N RIS Y N VW R ETEE VY T T T LT N VY R R Gy




Fig. 2 Cubic Diagram of the Horizontal Test Measurement Plane When a>0.8<0.0=0

®ig. 3 Plane Diagran of the Test Measureaent Plane Whan a>0,8<0.0=0
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Froa the diagrams it is possible to see four amounts of additional

displacement caused by the displacement of the contact points on the
contact heads: Ae4e=0'A4;—-0'4,=R,/cosa —R,

X' =X+(R+R)(1/cosa—1) (1)

At point A, a>0,8<0 . Let the numnerical data wmsasured
by the sensor be X’ . -From Fig. 2 or Fig. 3 it is easy to see that
the value of the difference between X” and X’ s Ay A,

These are three of the amounts of additional displacement caused by angle 42,

oa sensor A . TFrom Fig. 2 we obtain the set of relationships

set out below:
Froa RtAA A A, we get: AiAdi=AA7gB=YuB
Fron RiAA A 47 - e get: A A=A A ga=Y1gawg B (2)
Troa RtAA A A, we get: AiAdi=AAiigr=Ygr (3)

Compared with equation (2), equation (3) has: r=arcigliga-1g8] (4)

Because A A4, =Y1gr<0 , we also give consideration to =
3a51s5fying the geometrically equivalent relationship, and we then have:

S XA A= X (5)

Aftar we now do some more analysis of the deflection angle &. ,
the four additional amounts of displacement which are induced in the
displaceasents of the contact points on the measuring contact head of
displacem=nt saasor X can be seen from Fig. 4. The contact point moves
f-31 onint 4, to point 4, : that is, it rotates through angle £A:0%4,=r,0"4,
=R,cosa, Because of this, there is always a positive
1dant o7 iacrease:

-

Recosa(Treosr 1) (6)
Whan one combines this with equations (1)(2)(5)(4)(6) one gets:

x=),r'—y18r—(R+R.)($—1)—R.cosa(oc;f—1) (7)

Relow, whan we maka adjustaent calculations for the awmount of

—t

ispliz2aent xe2asured by the Y direction displacement sensor. We

3imilarly have:




At point B, : Y=0 B.O=R

At point & VI=Y+RER (1) (8)
At point B, : BiB,=Xgr
(62
" Xwgr<o , 1t satisfies the equivalent relationship
' Y'+ BB, =Y’
Y?'—Xwgr=Y’ (9)

The additional amount of displacement caused by the angle ¢ 1is:

Rycos B(1/cosa—1) (10)
From the various equations (3)(9)(10) one then obtains:
Y=Y"—X1g r—(R+R:)(1/cosB—1)—Recos B(1/cosr—1) (11)

(2) Calculations to Adjust the Amount of Displacement When the
Angl=s a.pB.0 Are Simultanzously Wot Zero

As far as an ideally flexible contact head is conerned, one has
only the times when the azimuth angle of oscillation ¢. 1is 45 degrees
and 225 degre=ss , waking use of forces, the combianed force of which
‘ crogses over the axis of the jet tube. In the case of oscillations with
other azinmuth anglas, making use of forces the combined force of which
1523 205 a5 A1l ¢ross3 the axis of the jet tube,adds an additional wmoment
2¢ force to the axis line of the jet tube. 1In this way,the jet tubs
robabes around the2 Z axis line, th2 anglz of which is designated 9 .
Daring onni-axial oscillation, it is only possible for the angle 6 to
be positive or negative. If one gives consideration to a.B , tne
overall influencing factors can be grouped into six types of sitaabions,

ki3,

0°=y,<d45° 6<0,(a>0,8<0)
45° < p,<90° 0>0,(a>0,8<0) )
90° < y,<180° 0>0,(a<0,8<0) |
180° <y, <225° 0>0,(a<0,8>0)
225°<¢,<270° 0<0,(a<0,8>0)

270° < p,<360° 0<0,(a>0,8>0)
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?ig. 4 Moveasnt of Contact Point on Measuring Contact Head

Pig. 5 Diagram of Rotation of Horizontal Test Measuring Surface 4<o

Going through a practical derivation clearly shows that the six
situations all possess the saa2 typs of 2xpression. 1In this case, it is
only necessary to 4o calculations for one situation.

0°<9,<45°,0>0,8<0,0<0,X>0,Y>0

¢ is the angle of rotation around the 0Z coordinate axis. It is

iy Sab tie by tizoatal test agasuraanent surface rotates through
1212 8 in the same way. Analysis of the front surface down to the
natnal influences of the angles of deflection a and B cause the
horizontal test neasurement surface to give rise to defocraition, After
making adjustments, a and B are used independently to cause ths
horizontnzl test measuczmznt surface to give cise to dz2forwations in CQE'F'G'H’
23 in the 1iagram, a1ad robate it through the angle 4 ;
Shat 13, b2zoning aE"F"G"H" , 43 shown in Fig. 5.

*ron Pig. 5 012 can see that the angle 6 causes the X sensor and
Tor2asne ty rs3pgachivaly acaunira sn additional amount of displacament

D21z Ay As ani EYBse .




Solving for A Ase , the D point coordinates are

{XD=X+O.Dcoso
Yo=Y —0,Dsind

A.0=0.D., XA0=X"=X+(R+R) (ot~

l)==X+A.O.

(63

.0.D=4.0, =(R+R')(§E -1) , also because DC=0,Dsin§<0 ,

therefore, the D point coordinate should be:

’ _ 1 _
iXp—X+(R+R.)(oosa 1)cos
l .
i Yp=VY+ (R+R)|——— -1 6
\ D ( c)(ma )Sm (12)
Make H™E™ and HYE"” cross at point J. Then, the equation
for the straight line DJ is:
l
|
Also oas has: X,—X’—X+(R+R.)<———1) (14)
cosa
Taxca 2jaabioa [14) aal sabstitute in equation (13):
—_1T ) S PO 1 v
== gl (R+ R ooz =1)(1=00s0) | +¥ +(R+ k(A= —1)sin (15)
: Rrom RtAA A ~we get: ATA,=Y 180
| o
(19)

------------------
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From *ig. 5 we get the geometrical relationship

A0+ A7A,=A4,0=X"
A,0= X*, A7 A,= y1136<0 .'.A,O—A:A,—A';'A-_.= A0

Substituting the various algebraic quantities and sinplifying, we get:

X=X"-Y(igr+1g8J—=(R+R ( )~ Rycos (_1__)
(18 86)—( o) cosa 1)0&9 R,cosa st 1 (17)
In solving "o BBy, , 4= use 2 proc=33 1deatical 5o 5Shat as=21 in
solving for AL A, , 2nd we obtain an 3 point coordinate which is:

g (18)

Y=Y+ (R+R.)(w;ﬁ—-l)cos0 |

Let EYF"™ and E'F* cross at point Q. The straight line equation
of 37 is

{Xs=X—(R+R.)(mi ~1)sing

Y=1g0(X-Xs)+Y, (19)
The Q point coordinate is: (20)
Yo=y'=y+(R+R.)(m+ﬂ—1)

Tury syashions £29)013) and substitube La o equabion (193):

i

Xa= g (R+ R ohp —1) (1= 0os0)+ X = (R4 R o= 1) sin (21)
ey g RiAB,B,Q 5 i3 possible to obtain BiB,= Xotg8
or “B = 1 _1 (22)
BB, (R+R.)(cmﬁ 1) (1- L)+ X1a6 \
The geonetrical relationsnip has the forna: B,O-B,B,=B8.0

T N oJ
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)
\ VBB, =Xogl0<0  ; at the same tiae, after ziving consideration to
» the superposition quantities for BiB. , one then has:
'
: Y=Y"=X(tgr—1g0)— (R+R.)(~——1)_l_ —R.oosﬂ(—l—l) .
Ey cosf /cosh cosr . (23)
;
Y
[}
N Bquations (17) and (23) are the equations for calculating the
) anoant of displacement adjustament which is measured by the displacement
‘ sensors in tha2 X aad ¥ directions daring omni-axial oscillation. The two
are both functions, and, set up together, they can be solved for an
“»
equation through which the awmount of displacenment (X.Y) can be
& calculatel from the measured amount (xX~.y" :
/ ~Yii(gri+1gd)— (R+R.)—‘ (—1——1)—( 1 _ 1)
: X, = cosa; CCSﬁ.' /
, 1 1—'!8':‘
3 < (gr, 31 1
X (tgr.+lg(9.)J R°(cosr. l)fcosa;-—cosﬁ.(lgr,+tg9.~)] (24)
:: +lg'9.~
N v [ a 1 . 1
A Y i—Xii(gri—1g0)—(R+R,) - 1 (__ - _(._.-__
v (g 80.)—( ) cosﬂ,;- cos B, ]) cosa, 1)
5 " I-1g'r, (25)
: 1
: g — g0 = _ cosaL( e e ta B,
. (tgri—1gé )J R.(oosr‘ l)[oosﬁ. cosa.(tgr,—1gf.)]
<€
‘ +lg'0;
\:: in one ev]_').'—tt'?,f)ﬂ% j=],2,i=0,] """ n
S R,Ry—— constants; airsBisrir0, are calculated froa the
) o anias givan below.
’ ’3) oalzulation of Angle of Oscillation
\ From the definitioas of the various angles of rotation one can
4
P nnve:
$ tga_=_){u_—_-_){.._= X=Xy =(Vii=-Yi(gaitgBi+1g6,) )
) Z.,— 2, (1—tg’a,1g:B.+1g%8,)Z, (26)
: = VamY, VUV (X - XD (igatg B~ 1gl,) , ,
) '8 A VAL A (1—‘8:a-t8=ﬂi+‘8;9i—)20 (27) ‘
22l 1lation of tne Angle v : PFroa equation (17) it is
) 20331ible to obtain:
4 57
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Xu=X11=Y, . Ve 1 ) _ 1
X! )'4mrqqga)(R+Ra(“Bm 1)a3& .&mxm(axr

Throngn dz=luction it is possible to obbain:

X= ::-—(Y,,+ya)(l8"s'*"Gg")"(R'*'R')( C(sla —])-C-(;o
‘ L]

—R.cosa‘( oo;r -1) (28)

i
Pron 512 1=2fialbLon:

Xoi=Xou _Xsi=X31_ 1, (29)
Y, 2Y, 2 &7

lg9i=

Iqaations (26)(27)(29) are a set of implicit transcendental
equations. Using the iterative substitution method in a computer

application, one solves for values of ai B0, . After this, one
then substitut2s 2quations (24) and (25). It is then possible to solve
for X,i Aand Y for the various amounts of displacement.

(4) Adjustasnt of the Numerical Data Measured By the Displacenent
3z2nsz0r 2,

Dafinition: The angle of oscillation is the angle included between (65
the geometrical center line of the jet tube and the 27 coordiaate axis.

It is =xpressed by the use of g .

The numerical data recorded by the Z» sensor, alone, due to the
2122 of 3lant oa the 72 plate, introduces an additional aasount of
Jisp~azr2a23nt. Moreover, this angle of slant is always equal to
] oscillation :1.3". 2 ) . Ta ordsr to snlve for this oscillation angle, 5
Y12 aash Sish solve Tor the direction number of the geometrical center

- -
L

Lnz2

A.'=,\’“—X“‘;B¢=Y;.'—'Y,.-}C=Z,—Z,=Z
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C
Oscillation aagle 8 cosdi= e (31)
Adjustaent caleulation for 457 Z"=Z;:—R'(_do_i-d-__]) (32)

In a heat test bed situation, it is possible to make use of two
Iisplac:azat s2asocs Zsa-anl Zss {a ordar to replace sensor 2, . Zia
A1l Zy,, 12 iastalled symmetrically on the two sides of the jet tube in
ord=r to avoid ignition flame heat corrosion.

)

As Pig. 6 shows
AT / /"
i
Zh / Q
fa
0 ///r
X A 2= 1B .
v /10 2;3%3“5 0. |
1
| |

’ . !
/g;{ ta) (bl

™2

ig. A {a) Zhart of Sensor Distribution (b) A Comparisoa of Sensors 2z,
+nd Zus to Sensor 4
It is easy bto dza0nsirate thab, batszz2a Zia Zsa and 2,

1

there 1s the relationship shown below:

Zy'=(Z.4+23)]2 (33)

(5) Ad justment of the Coordinates of Actuator Tube Fixing Points to

Toatrol the Dirc2cetion a1l Anoant of Thrass
Jus £5 bthe r23uits of pr2ssare contents and the Tore=s asad gith
2Sor tubes, the displacement of th2 rod Tixiag poinh 4oz 52 adis

r2acha23 a4dove 521, Tais not only produces an influeac: 21 $ha2 shoek

proz2s33 of the actaator tidbes. Tt L3 4lso relat2d to tha li-~2025l00 of Hhs
foreces used and the force momentum. Therefore, it is

4

to nake adjustments to the asasured amounts. Most of the

SR, -~ e TN - e e et '
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1

agount of sne cnange i3 aloag the dirsction of the axis. Therefore, the

ad justuent is approximately:

{ZOH=H°+H'|" .
ZQN=HO+H:.- (54)

In the squations, He is the coordinate of the rod fixing point. HV..Hj,
Ar2 the values of the amounts measured.
(6) Calculations of the Motive Forces Fu  aad Fa  TJsed to

Control the Amount and Direction of Thrasy Fo

=

As motive force one can choose to use the tensile pressarz2 senso

oatacs agasarements obtained as Fu and Fo . Or, one caa aeasurs the
or23suar2 differential P on the two sidaes of the pilssoa. Th2 force used
is then:

Fu=SP,,
In the equation, S is the area of the piston, /=1,2,i=1,2,...q, .

TJp to th2 prasznt tine, we have solved for the following parameters:
XH\XH‘XH\ yﬂ\yu\Zu\zo.4\201{\}:”‘}":5\“{\5(\04\"!\61'\14(\3-'
214 C , 28 w21l as constants to Ye used in later calculations. It is

not naza2ssary (o 2xplain these for our purposes here.
(bb

2, Calculation of Center of Oscillation for Flexible Jet Tube

TS SONCEPT O A CINTER DR OSCILLATION

As far as the concept of a center of oscillation for flexible jet
tnbes i3 concerned, both inside and outside China, there have been
Sreaniz2ats ia o4 naaba2r of fechnical reports. But, these reports have not
found a clear and precise definition. Moreover, there have been several
netnolds put forward which 4re obscars nd anclear. 32fore making
211leculastons of the center of oscillation, we plan to have a clear and
nracise concept to act as A theor-ti 0 2t le2 Tor 4aalysis and
aaicnlations.

Dat b3 2 o2do4 rzhater of ss ol Vo wwat L ounderstood in the

“olloring taras.  In thne c4i3= O° risli vadies, there are, of course plane

ns:iliasioas taking place =s w7 in - itil Hs~illations (omnni-axial
33211 kasion) . Both of th-ose exiut sinply 13 @ s2ries of instantaneous

+£i1]l ro%ations, and no instantan2nas conter of oscillation exists.,
dhvinously, a Jjet tube is a rigid body, =:nd 1ts centar »f oscillation cun

change,
60
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Flexible jet tubes also have a point which functions a3 their
theoretical center of oscillation. TIf the design and aanufacture of th:
flexible connector heads are both absolutely ideal, this leads to the
flexible jet tube rotating arounl the sane fixed point. What are called
its instantaneous axes of rotation all pass through its theoretical
center of oscillation.

Absolute idealization of flexibdble jet tubes dozs not exist. In
reality, due to content pressure (or combustion chamber pressure)
changes, flexible jet tubes are made to produce relatively large amounts
of axial instability. Besides this, flexible connector heads do not have
uniform distribution of material around their circuaference, and, during
oscillation, their acceptance of forces will not be entirely symnmetrical.

It is also impossible that the deformations in the flexible connector
12213, vyhizh a°2 cas2d hy this. should be symmetrical and uniform. This
#1ill also cause the instantaneous axis of rotation of flexible jet tubes
not to pass through their theoretical center of oscillation. When
flexible Jet btub2s aadlz2rgo oani-axial o3z2illation under various types of
content pressures, the series of instantaneous axes of rotation will
form a cylinder-shaped included figure. This figure will be symuetrical
around the center of oscillation which will be inz2luded in it. This is
called the "oscillation center" for short. This is also nothing else
except the actual oscillation center of the j=t tube, the size of the
g2ometrical dIimensions of which reflect the qual ity characteristics and
rigidity of the flexible connector heads.

I? on= is econsidaring dir22tly 30lving for the geometrical range of
the included center of oscillation, it is n=c=2s33ary to have dense

4 )
i

instantaneous axes of rotation. It is also necess=ary to have Large
amounts of experimental data. It is difficult to get to this poias, aal
it is Aalso not economnical. On the basis of this special characteristic of
J2t Bihas cosabiag arouand these fixed points, 1t is possible to rexch tne
2o lasion which follows. The instantaneous oscillation center of the
22212570 24% 22afaere Line of Je2t tubes, is always a reduplication of this
fix21 point. This fixed poiat s owhat i3 21721 Sh2 oscillation center

~ [
v

07

L 4 h VO
)

f this, we then use the instantaneous

> i3
12 J2

o

ometrical center linz of

v

o)
nseriiabion c2ater of the 2 A J=2t tube to
f‘

raplace the point center of oscillation of the jet tubes. 3By m=2ans of

61




this method, we use a limited amount of experimental data to solve for
the g=ometrical size range of the Jet tiv2 oscillation ceaterc. Morzover,
this supplies a reference point for solving for the instantaneous noment
of force of oscillation.

bDuring oscillation, if the geowetrical cz2at=r Lid23 27033 21ch
other, the results of the calculations discussed =zbove arz zonplately
accurate. Howevear, 1{ i3 also possible for them to be wutualliy off and

1% 2r033. Ta such a case, one then takes their "wvserage oscillation

p112" aad solves for the oscillation center. Cbviously, the r=sults of
this are approximate. Thz degr2e of this =:rroxination varies with and
ncreases as the dagrees of gradaation of thz neasarz2l angie of

i
nacillation is reduced. Experimentation :72+~ly 0w Shan, w21 Bhe

measured angle of oscillaticn is chang=1 o1 'S5 i=2gr=-5 to 1.5 degre=s,
th2 distance betwszen two adjacant 22oa2brizl :2a%er “lnes drops froa

D.5am to0 D.2mn,roughly speaking.
JALCULATION OF THE OSCILLATION CENTER OUF FusXis.g Jx TUBES

In order to simplify the discussion, 1=2% 5= I=2)a2trical 22abar
Tin2 of the jet tube be the Z’ axis. This i3 not the 3212 43 th2
axis of the coordinate systen.
The Z' axis squabion is: X=Xy _Y-V,_2-2, (35)
A B, C
™2 :qnation for the Z plate plane is AX+BY+C(Z-2,,)=0 ISR

The set of simul-in2ous *quations (33) (36) gives us e

coordinates for the O poins., T2 0, PR SR TR IO NI S U A O S I

=CZI¢—AtOi_B-'P4

<9y

AK,+Bd,+C -
xu.:A’|:O,+Q|
y.i=1,2.,+P,




(67

In the equations Ki=A4,/C;Qi=X,—K.Z,yL;=B,/C;P;=Y,—1.Z,

The O, point is a point on the 2Z/ axis. In the initial
configuration, it 1s a duplication of the origin point of the coordinate
systen.

If we postulate two mutuzlly adjacent insbtaats, bths plans at Oy which
contains the instantaneous center of oscillation is e . We then

have:

(x--'x.;)''i‘(y-_}'o.')’'*'(2—204)’=\1"'Jcn—|)"+'’\.V“.}'o-'-:)x
+(2— 202!
After rearrangsaeat, we g3t: iz Aux+Buy+Cz=D, L 33)

Tn the equations

{Au=xu-xn-.;B,‘=yoe—y..--,;C..-=2..-—-2..---
Du'=(xof +y03 +Zo:—xof—l_yo:—n—zof—n)/z

In order to solve for the iastantaneous axis of rotation of jet
tubes, one must still find a second point on the plane on which we
find the center of oscillation for the time interval during the sanme
perinsd. L=t this be the intaersection line of the plane  mi,au and the
plane & , and one then has the instantaneous axis of rotationm.
B2oanse of the fact that a measurement error in the system is :

nnavoilabla, 15 L3 oaly sazn Tyilag that the degreec of precision
a3s30ciated with the axis of rotation which we find is optimunm. The O

poias i3 a fixel point on the jet tube axis line. Points which satisfy
a2 zoalition F AR Fi1L vary with changes in the oscillation of
e j2b tabe. The method for the fixing of coefficients is none other
than an uancezsing pursait of these points.

e

If we take the plane 7w , and set Tl =y
et A“‘x+B|I_V+C|{z=D.. \ 55)

If we 39Lv2 the siaultansous ~quabions {35) aal {33)-
b2t i Lanerszction point of e wad the Zioi s M El(xae Yee e s

. When we 30lve, we get the result:
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4

]

4

b

b

The coordinates for point E. . (40)

4 _(D.d"‘AI-Oi—I—BI-P'—I_)_: ; .
;le_ A,.‘Kf_,+B..L.'_|+C|.' KhD:lTQh
X||=K||Du+on

] . yli=KllDl+Q:l

' in the equations

E Ku=1/(AuK o, +B\Lo,+C,0)

ONB —(AHQD-I+BIIP|—I)/(AUKI—I+Buli-l .‘.CIU)
K,;’K‘-.K" KH=Ll—nKa.
Qi=K..,Q.+Q._, Qu=L,_.Q:+P,_.

Mixa the Satarsaition point of plane #w  and axis 2, be Ev(xasyein)s

......

v 22 bt ~agnlt:

E
h ooz w2 3oLy, v g2h e
t Tooriinates for point E

D. _AIQ_B P
2,, = B net=L,D, P,
A K, ~-B,L+C, (1)
Xy =L~,D,,*P
,\/n.:L;,D,,‘P,
in ta= equ=tid13:
L, 1 pom AN 8L )

“4.K.+B,L,+C.°

L"gh"L“' P-:'Q«*k’.Ph
Ly,=L,L, P,=P +L,P,

A SR S SO K..L,.P, ., Lo 0 :




(x.',-,—x.;)'+(y.;_.-y..-)’+(z..-.—2..-)’=(x.,.-—x,. )
+(yu'_)'n)' +(20i—24,)°

takes oquaatioans {49) and (41) and substitutes them in an
arrangement, one has
UuD.3+VnDu+Wu‘°
in th= 2yaations
Uo:”’sf""x:"'Il:_Kaf—Ka:— (ot
V04=2[Ku(xn—|—on.')+Ku(yu-n_Qxd)"’K:l(zn—n—Qn‘)
_Lu(’u"Pu)_Lu(.Vu"Pu)—Lu(Zu_Pu)]
;Vu"(Iu"'Pu)’+(yol"'.)'u)'+(204"Ph)"—(3u-:—ou)'
"'(yn-:—Qxi).—(zoc—l-Q:‘).

351ving 2quation (42) we have:

D-n.x=—Vﬂj:\/Voz_‘Uuu,u (4‘5)
2U,,

D.,.. ig then the fixed coefficient we were solving for. There
“v) 31=2t3 nf 30lutions. Howevar, corr23ponding o our actaal problen,
Y- :olubion e* i1 which 2, =2nd 2w are siaaltanzously smaller
~1oz2rd 13 appiizanle.  Therz2fore, we take the two solution sets of
A DR ")-gﬂﬁl sababinate thza r2sp2ctively into eguations
ani 4'). Prou tu- principles discussed above, we decide and make a
Renays2 of this, after w2 make a decision, the solutions of
Sy iy, then oaake 1Lt possible to solve for tae
wnich i3 located tne siaultaneous oscillation center for

fat o tabe. loreover, A Ln,, . Its

o

N

(=2 )+ (y=yo) +(2=2, ) = (x =20 + (y— yy Vi +(2—2,.)

Ay x+ B.«y+C..y=D..

65
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in the equations

{Au’:xu'_xu’Bu’=)’u"}'lncu=zu—zu
Du=(x|f +y.f +2.f—x.f—y.f—z.f)/2

The line of intersection between planes & and %y 13 the
instantaneous axis of rotation we are solving for. Below, we also solve
for the plane of oscillation of the geonetrical ceater line Z' axis of
te jet tube, and we let this plane be uEl .

During omni-axial oscillation of flexible jet tubes, the most
2212ral sitaabion for the track of the Z' axis is a curved surface in
3p422. If w2 take this curved surface and divide it into n partial
curved surfaces, and, respactively use a plane to approximately replace
their various oscillation planes ey , 1t is obvious that, when the
dissected areas =an are increased in numder, bthe level of the
approximation is raised. We select the number = s0 as to satisfy the
reaqaireneat for precision which happens to exist. 1In order to solve for

the oscillation plane 7y, , one first does the calculations sat out

o’

elow:

(i) The direction number N¢ of the common perpendicular line
batween the jet tube axis line Zi_, and 2! for two adjacent
inshants.,

Make the direction numbers of the axis lines Z.., and ZI
respactively Ny and Ny , then:
N,={Ai=1»B-,»,C}x{A4,,B,,C}={Ay,B,;,C,,)} (45)

in the equations
”=C( B"'-B‘)'B“=C(AI_AI—I)ich'=A‘-|B‘-A‘B,~_,

(ii) Make plane R contain axis '+ . And, make it
o aliel to N, Then, the equation for R, is

’ x—Xu—ny—Yu-n z—zu
A,_ly B‘—l, C =0
A”’ BN’ Cl(

Rl‘-li

2"’ s g e,
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Lane e ote

Dr it is: A..x+8uy+C-.2=Du (46)
3 4_1‘ 3 Qg . t‘ 3
in th2 ejquatioas Ay =B,..Coi—BsCy Buym A1 C—Ai-iCu
Cu=A‘-|Bn—AuBo-n D"-A“X""+B.‘Y"—l+C"z'

(iii) Make the plane R contain the axis 2’ , and make it
parallel to N,, Then, the equation for R, is: (69

:x—X.,,y—Y,,,z—Z, l
RIS lAn Bn C =0
A:."’ B!l, C" l

Or Aux+ By y+Coz= Dy, (47)

in the equations

A“"‘B,C“—B.,Cl B.,=A,,C—A‘C"
C.‘=A‘B:(—A!|‘Bl’ DQJ=ACIXII+BCIYH+C.|'ZI

The intersection line between the planes R, and R, are the
mutually perpendicular lines Z)., and the Z, axis Dbecause of the
fact that the direction number n, of the line of intersection is
23ual to the vector aren (N.xN,) of the direction number of Zi.,
and the Z axis.

The various simultaneous equations (35l(46z(47) necessarily make it
possible to solve for the intzarsection point of the autually

parp2alicular lines of the Zi -, and Z. axes . The reason for
this is that the intersection line of R, and Ri-, 1is located on R,.,
on the one hand, and, therefore, crosses the y AP axis, but, on the ’
other hand is also located on the plane R, , and, therefore, must
necessarily also cross Z, , as is showa in Pig. 7.

(iv) In solving for the intersection point .Ewi of the mutually
perpendicular lines and the Zi-, axis, take the equation for the axis
Tin2  Zi, 211 changa 15 S0 he of bhe fora of a2 paranetric ejuation.

d
Pron 2juation (35) we get:

(x=A,_,t+X,,_, (48)
iygBl—lt+yll—|
2=Ct+ 2,
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Fig. 7 The Mutually Perpendicular Lines of the Geometrical Center Lines
for Two Adjaceat Tasbtants During Jet Tube Oscillation

If we take equation (48) and substitute in equation (47), and, we
also make t=K.,, , we then have:

K“=(D“_.A.‘X”—|—'B..'yll—l_CO‘ZJ)/(AIIAI-I +B‘iBl’-D +Cllc) (49)

If we take Ku and aske iterative substitutions into equation
(43), we then obtain coordinates for the iantersectioa point E_., orf
the mutually perpendicular lines:

X;:.--.=A....K..-+X”...
El—ll )’Ef-ugBl—nKu"'y-.—n
25,.,=CK.+2Z,

{v) Tn 3nlviag for the intersection point E, of the wutually

parpendiicular lines with the Z, axis:
Tha1g2 the straight line equation of the axis Z, to a parametric

form:

x=At+ X,
2.\’-84‘+Y,,
2=Ct+ 2,
(51
68
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If we take equation (51) and substitute in eguation (45), and we
then anake t=K. , we have:
-Du A.LX.,—B.,Y..—C.,Z
K= A+ BB+ CoC (52)

If we take K,=t 10d make iterative substitutions into equation
(51), we get coordinates for the intersection point E, of the mutually
perpendicular lines and th2 axis Zi ;

xgi=A Ko +X,, (53)
E, yeu=B,Ky+Y,,
2n=CKo.+Z|
TS5 L3 eas3g b 32e that the points E,., aad E, are certainly
not the same geomnetrical points on the axis line of the jet tube.
(vi) Coordinates for the center point Ew of the mutually
parpandicular lines E._.E, (70
po=(Xpimr+2g,)/2
Coordinates for the point E., Yeoi=(Yeimi+ye,)/2 (54)
Zgoi= (21t 25,)/2
From =quations (45) and (54), it is possible %to obtain the plane of
032111latid1  ®ne Frayq Pastant ti- Fo instant t, of the geometrical .

zenter lines > 5he jof habe:.  Tudh U3,

Axi(x—3301)+814()’—yrol)"‘Cn(z-zn.)-o

or Anx+Byy+C,2=D,, (59)
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The system of simultaneous equations (33),(44)(55)

Aux+Byy+Cyz=D,,

{A.‘x+8.,y+C.,z=D.,
Ayx+ By y+C,,2=D,,

nakass it possible to solve for the instantaneous center of oscillation
the geometrical center of a jet tube CilXeis YeirTei)s . This 1
also none other than a point on the center of oscillation of btz j=2t

tube. It is possible for this set of equations to be solved througn

the use of a computer. Therefore, we recognize that XeioVeisZe ar
already known. Later, we will make direct use of them. Fig. 8 is an
Llhast~abive liagean of the instantaneous axis of rotation of the jet

tube and ths instantansous oscillation center of its geometrical center

lTine.
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%, Calculations of Moments of Porea

The systeans of moments of force which we are solving for here
point, under differing dz=signated wave forus, to a selected series of (71
instants {oc, oane might say, angles of osciliatioa) to figure out the
overall instantaneous momeat of force. The focus of this article is on
solving €for the monenb of Force-angzgle of oscillation function
relationship (M=/(d)) . From this, it is possible to obtain the
maxinun anl miaiunum (algebraic values) overall moment of force M aux
and  Ma. , 23 well as 1ts nouaent of force-angle of oscillation function
relationship. Besides this, it is also possible, through the designation
of different wave foras (normal sine waves, sawtooth waves, and square
waves) to obtaln the curve of the fanctional relationship M=) . As
far as the elaborate separating out of elastic moments of force,
asyaastrical aomnents of force, and moments of frictioa, and so on, is

oazz2ra21, this article makes no additional discussion.

\l«

After on2 solves for the instantaneous center of oscillation, the

a2jor contradiction in a solutioa for the instantaneous moment of force

becoaes the probl=ws of the point of action and the direction of a systen

of forces in a specified space. We chose to make use of the two methods
of Euler transformations and four dimensional numerical transforas, and
the relasive difference in values of force arms which we obtain in the
solutions is not greater than 0.8%4. Even so, we only introduce one
a25n0d nere.
(1) ™13z ?ria% 27 Achion TJ321 to Control the Direction and Amount of
Tnrust
Fron Fig. 1 one can see that the actuator tube aoveaent points are
~3y»3pnret’valy G, and  G: ,the points of action for motive forces Fi
F, . Moreover, the points G, and G, are coanzched to
igidity provided by the rod. Therefore, t1z problz1 Ha2orazs H12 of
solving for the spatial coordinates of points G =and G
{1) 32122tion of a dynamic coordinate systen
)

Traaslation coordinate systea:

71
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GX'Y'Z!  ___the coordinate axis which corresponds to the fixed

coordinate system QXYZ is always maintained parallel. The origin point ¢
is the base on ths rod ceater line for point G, (or G: ).

Pig. 9 Thz Transforaation of a Dynamic Coordinate System Frow GX'Y'Z'-GX*YrZ*

(») Rotary Coordinate System:
GX"Y*2" ———- the angles of rotation corresponding to the
pordiaabe systen GX’/Y/Z/ are  @»d¥,  und their rotational order is as
nted below: (See Fig. 9)

w

, pr‘e. i

Ju
W

Pirst, we rotate through angle ¢ around axis GX’ , obtaining
coordinats systme GX\Y. Z,

We also rotate through angle o around axis GY, R
ahaining the coordinate system GX.Y.Z, .

Tiaally, w2 ~obabz throagh angle ¢ aronnd axis GZ,
obtaining coordinate system GX'Y*2" . The angles @8, are

called ZBuler anglas.
{2) Eulsr Angles and Their Transformation
(2) Solving for Buler Angles
In the 2alcalations of Parh On2, w2 already Obtainz2d the result

thnat th2 angles of rotation around the various axes of the fixed

s
<r
X%
—

codrdinabe sy

v

AL

OXYZ by th2 axi3s linz of the jet tube are  g,a.0. .

T

"o w2 mast 30

4

ve for the Taler 1agles which corra2spond 50 eacnh instant.
“roa ™

9 1% 13 possible to obtain the transform angular velocity
i

2.
projz2eciina ~elation.
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Gx'y'2’ coordinate systen.
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Table 1
|
® | 3 { ¥
GXx' 1 0 | sind
GY' 0 cosp l' —cosd-sing
Gz’ 0 sing I cosd-cosg

Pron Table 1 we get the following series of relatiang equations:

:=d_ﬁ.=‘i¢_ 1 .d¢
T dr TS

== = - —_ — 1 . d¢
Wy m Cos @ . cos 4 sin ¢ a3t
! l——a — 1 * — . O ——
\w, = it =Sih¢e : +cosd - cosp ’Ut

df=dp+sind - dy ,

{da=cos¢ - dé—cosd » sing * d>¢ ® (56)

df=singp - dé+cosd - cosg - dy

Gonriinate transforamations are only related to the results of

rotational wovements and do not consider the process of their rotational
1ovza2nts. If one desired to solve for the corresponding angles in a
cartain situation, it is possible to recognize that one always begins the
rotational movement from zero degrees and siaalbancouasly nak2s as: o fHhs
method of freezing the coefficients, recognizing the use of approximatzsiy
uniform rotational speed. In this way, equation (56) can be seen as
becoming a set of differential equations with constant coefficients and a
zero integration constant, for purposes of integration. Because of this,

one has:

Bi=¢i+8in6i Bz
a,=cosg, - §,—cosd,;sing, - ¢,

(57)

8,=sing,8,+cosd, - cos; * P,

In order to facilitate thz carrying out of iterative substitution

calculations, we change these to the form shown below:
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¢, =(08,cos9,—a, -
@.=HF,—¢,sing,
3;,=(a, +00sd,; - sin

The initial value for iterative substitution can be taken to be:

(b) Buler Transformation

The purpose of the transformation is to carry out a solution for

moments in a fixed coordinate systen.

order wuich is given in Fig.

Transforuwation of CX'YPZ'~GX.Y.zZ, :
cosyp, —sing, 0
A, =( siny, cosy, 0) (59)
0 0 1
Transformation of GX,Y:Z,~GX\Y,Z, :
cosd 0 sind, (607
A= 0 1 0
. —sind 0 ocoséd

!
A

Transforaqcion of GX\Y . 2—-GXx'Y'z’ :
RN t
A= °°°8¢"8va ot b

Y0 sing cosg
ety S Seaasforaation natrix froa GX*Y"z* Lo GX'Y'Z'
he A,. Then, we have

)
5
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sing,)/cosé;

Binall we solve for the Buler angles:
NS 3

9, we obtain the results shown below:

T T N T TP T T PO T YO R et ot agt aa® ¢ o oo f a8 o ¢

(58)
Qi ¢:)/008¢:

Pl =8,18"=a,/cosp,,

1
¢i\¢i\6io

On the basis of the transformnation
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icosmoosél
A,== sin p,cos@,+cosy,sind, - singp,
: Sin¢, . mw‘—mv‘sind‘ * OCBg)‘ g(m¢‘sin¢‘+ﬁnv‘ .

(73
sin §;
] (52)
- —cosd, sing,
cosd;cos @,
The transformation of point G. 1in coordinate system GX'Y’'Z’
rx";” ] ch 5 L.
| Yo I=4, 0 ek
L2l Lo
The transformation of point G, in coordinate systen GX'Y'2!
Xca -l l— 0 1‘
Yecau =A'| R¢ . -
, |
Zca “ 0

3) Traastcaabion o7 aoviag rod points

-

coordinate systenm
As far as the translation oparations of

52 a1dant 0 diaplacenent of 24ach polnt aist b eypaival-nt,  Noa,
yelar 5o 3HLv2 for a2 aagount of displacement of the or.sin point G
»7 51 Sranstation ecoordinate system:
'GO=Heq,.". (=2, My m vy V= s e
75
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»— Sin ¢,c08 4, ’
» CO89, + CO8@,— sin p, sin g, sing,,

sin 4,cos ¢,

G, and G, n 4 fixed

rigid bolies wure 2oncerna-id,




Solution of the simultaneoas equaations (33) and (65) allows us to

obtain =oordinates for the point G

PN
[WAY
(WA

~—

ze,=(—V,—VI=4U, W, /2U,
x¢,=K,z¢c,+Q,
yoi=L,z;, + P,
in the =2quations Ui=Ki+Li+ 1V, =2[K(Q, =20 )+ L,(P, = y4,) - 24,]
Wi=(Qi=x.)'+(Pi—y ) + 2, sWe, =W ,—H}

By putting ejaation [ 63) and equation (64) togsther respzctively
5

;otn o 2quation 3), % 1 pos3sibl=e tH obtiin the transforaation of poiats
Y FY

G. ard G, in ta= fixed coorlinate systeu.
)
vansxélc+xG'
% -)"c:.=y&u+."t-'- (67)
ZC|.=:;TH+ZC'
[ ) xCiqaxé?|+xC’
{ PO ,\'c:.=)'('.‘u+yl-‘- (68)

Z2 =2y, %+ 2¢,

i Tee dire2tion of the forces acting to control the amount and
T Y meminn of forzas uacting
- S et T2 hapiicate tne axis line of the activator tube.

~

or the dynamic fulcrum and the fixeid

: . ., S N it

(-, = 3071 Py~ gheir directional cosine.

(69)

. _ Fad F”
AHchlt-RO'Bu=)’cu‘cu=zcn.‘—HOu£
- F . -40.=xGl|'Bo.'—_-yc”—RO’G.‘SZG“_HOH;
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Aran l2agth of activator tube:

Ill‘\/A.’ +B.: +C.:
lyy=v4,7+B,7+C,? f

Directional cosine of forc=

cosa,;=A,;/L.;
Fu Cmﬂll=Bh‘/Lli
cosy,=Cy/L.;

also

(2) Projections of the Fforces

axes:

F,..=anan
FI’I Fllmﬂ”
F;;(=Flicmvll

also

(3) Matrix Calculations
(1) Solve for the matrix

genaeteical

the center line of
(a) Radius vector of the

forces acting

r..=C,G,,

f....=(x¢.,—xc,)/1000
¥ "lra'=(y6u_y(.‘()/1000
"xu=(2c”‘—zc,)/1000

also

(b)

Ptz tions

.'\ \

.®,
J_A_A_L.LJ_A_.L L " 3 _l\

Overall moment of forc=-~Main moment ani i:3

of the mnain wmwoment on

'A_‘\AA.‘.A.A'.‘\\\

3 acting:

malo=A’./L)-|
{Z cmﬂll =Bl./Ly,
cosy,, =C,,/L,,

F’l

acting on the varinus

SF'"=F”ma“
F:n=Fu°mﬂn
F"‘=F“Cm?“

of the instantaneous oscillation
the jet tube

41

th= various

77

coordinate

7))

T

coordinate

renter

instantaneous oscillation center of the

and 'u-'C;Gu or
15
( ru.‘=(xcu_xc.’)/1000
? "zn=(ycu_."c.')/1000
riei=(261—2¢;)/1000
relative 1)
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Tea o spaat o3 77) and (735, we can then sclve for the asaeat of
-~ M . f ne in3tantan-ou3 ki of ~ot s iion
M_.-er.ICXIU_, \/j)
oatiaz specfo s noaent of fore=g
L3
M_o=IM_ /v,
P ) IO 1! T Doyt 3
1 ' colastant v AT )T Xohtation
- ' TR “ation cwernter whicnh we already solved
e e Zesd i ALWB.Co v s taea possible to 3olve
- | | beods ot v " matation:
x—Xx - 2—2 41
= ,u_-l_glu- . L3
A, -t C..
Coe .oty 2o rnrourgh the horizontal projection diagran
it o4t Y st ion which appears in thne X =Y diagram,
‘ et e e T e raan e ,f o3cillation of the
PR 1, i 4y, W sntain (t3 projection equation:
52
ve K _,x+b, 2
K_,=B_ /A ...by=y  —K_, x.
g L ’ o 1} center line 5fF j=t tab:
I AT R $r. , then:
’ S35
‘CW-"B.«-".
' Covaptr b LT ane it s gt s range of =300 degress.
» . o‘ ' 3 v . M L’ \ f"‘t’
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(3) Calculation of Eccentric Thrust

Jet tubes, due to the effects of additional designated oscillations
aml contaia=zd pressures, are capable of causing jet tube axis lines to
Zive rise to radial displacement, creating thrust eccentricity. This is
an iaportant technical target of flexibl= connector heads.

In initial configuration, the jet tube axis line eguation i3:

X=X, _Y-Y,_Z-2. (34)

- A. B. C.

T4 512 211ations:
XoYeZs -—- are the coordinates of a certain point on the 02

Js

X i3,

AwBoCo ——— is the dirzsctional aumbar of the 0Z axis, which is
always, for Xi=Y(=0,4,-8,=0,Z, and Co equal to certain
constants. f w2 let the thrust eccentricity be D , and we solve
)

211inions (35) and (84), we then have:

X.,—X" yu—yoo zl"zl

A. B. C‘ y
p-dl a8 _c |l -ITuloBld (35)
! J A. B. ! B. C. ! C. A' ! ) '
A, B, B, C C A,
T Anzala~ Talncity of Jet Tube Oscillation

37 S Sia: "uiction we already obtained for the angles of rotation
1roanl the various axes:

Bi=f(K - ATia,=f(K - ATWO=f(K - AT) K=0,1,-n

AT --- eauidistenbt s3anpiing int2rvals.

m'l=(ﬂl_ﬂ.—|)/AT
(Dy.‘z(a.‘_al—l)/AT (86)
w,=(8,-0,-.)/AT

.......
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The overall angular velocity @¢ is3:

o =vaot+a, +a,’ | (87)

(5) Stroke of activator tubes

In the third section, we already solved for the instantaneous
lengths of activator tubes L., and <Ly, with the zero position length
of th=2 activator tubz as Ly . Froa this, ths strokxs of the activator

LSk e e an gm0

tuves is:

e A s o g

{ AL.‘-L.(-L! (88)
AL,;'-L"—LO

—wr

(5) Spatial displacements causad by the effects of axial
displacenent conpensation and contained jet tube pressures
This compensatioa is autonatically carri2d out when the coawnand

W Wy

signal is zero. After that, one carries out measur=uents and
caleulations of its spatial displacement. This is also another important
L2ohnical paraneter of fl=xible connector heads.

Jith jeb tabss  ia th2ir initial coanfiguration ( pressure zero,

command zero) the electrical zero value of the mechanical apparatus and

the sensors shoald sabisfy:

»
4
E -Ya:—XI:"O'Yx:—yn:"o'zo:":o
Aft2r 2arcying out compensation for the 20f22t3 of coatained
pressure, this should satisfy:
[ X=X | 0. 13|V =Y |01 We then have:

|
) Axial displacenent: AZ=Z— 2

Radial displacement: AX=X,;—X,:} (33)

Ay- y;;—"Yg:
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